

Password Strength Meter

Password Strength Meter

Registration form is like the first step that user needs to take to use your web application. It’s
interesting how often it is not optimal part of the app. Having an unfriendly registration form may
hurt (and usually hurts) the conversion rate of your service badly.

That’s why dynamic features are often starting with forms. On-the-fly validations, popovers and so
on - all of these are common in the modern web. All to increase chance of signing up by an user.

Apart from the sole signing up, a good registration form needs to make sure that an user does not
do anything wrong - like setting too simple password. Password strength meters are a great way to
show an user how his password should be constructed to be secure.

Requirements

This example will use React-Bootstrap¹ components. Remember that React-Bootstrap must be
installed separately - visit the main page of the project for installation details. Using React
Bootstrap simplifies the example because common UI elements like progress bars don’t need to be
created from scratch.

Apart from this, a tiny utility called classnames² will be used. It allows you to express CSS class set
with conditionals in an easy way.

Of course the last element is the React library itself.

Recipe

In this example you don’t need to make any assumptions about how the password strength meter
will work. There is the static HTMLmockup ready to reference how the strength meter will look and

¹http://react-bootstrap.github.io
²https://www.npmjs.com/package/classnames

http://react-bootstrap.github.io
https://www.npmjs.com/package/classnames
http://react-bootstrap.github.io
https://www.npmjs.com/package/classnames

Password Strength Meter 2

behave, based on the password input. It is written using the Bootstrap CSS framework, so elements
presented will align well with components that React-Bootstrap provides.

Password Strength Meter States

1 <div class="container">

2 <div class="row">

3 <div class="col-md-8">

4 <div class="form-group has-success has-feedback">

5 <label class="control-label"

6 for="password-input">Password</label>

7 <input type="password"

8 class="form-control"

9 id="password-input"

10 value="FW&$2iVaFt3va6bGu4Bd"

11 placeholder="Password" />

12 <span class="glyphicon glyphicon-ok form-control-feedback"

13 aria-hidden="true">

14 </div>

15 </div>

16 <div class="col-md-4">

17 <div class="panel panel-default">

18 <div class="panel-body">

19 <div class="progress">

20 <div class="progress-bar progress-bar-success"

21 style="width:100%"></div>

22 </div>

Password Strength Meter 3

23 <h5>A good password is:</h5>

24

25 <li class="text-success">

26 <small>

27 6+ characters

28 </small>

29

30 <li class="text-success">

31 <small>

32 with at least one digit

33 </small>

34

35 <li class="text-success">

36 <small>

37 with at least one special character

38 </small>

39

40

41 </div>

42 </div>

43 </div>

44 <!-- Rest of states... -->

45 </div>

46 </div>

This piece of HTML defines the whole structure that will be duplicated. All “creative” work that
needs to be done here is to attach the dynamic behaviour and state transitions.

There are some principles that states how a good password should look like. You can think that a
password satisfies or not those principles. That will be important later - your behaviour will be built
around this concept.

As you can see, there are three states of the strength meter UI:

• Awful password - progress bar is red and an input is in “red” state (1/3 or less principles
satisfied)

• Mediocre password - progress bar is yellow and an input is in “yellow” state (1/3 to 2/3
principles satisfied)

• Great password - progress bar is green and an input is in “green” state (2/3 or more principles
satisfied)

Since you got a HTML mockup, after each step you can compare output produced by React with
HTML markup of the static example. Another approach (see Prefixer example if you want to see

Password Strength Meter 4

this approach in action) is to copy this HTML and then attach the dynamic behaviour to it. In this
example the code will start from the top. First an empty component will be created and then the
logical parts of this UI will be defined. After those steps there will be iterations to finish with the
markup desired.

Enough said, let’s start with an empty component:

1 class PasswordInput extends React.Component {

2 render() { return null; }

3 }

Let’s think about what logical parts this part of UI has. On the highest level it has a strength meter
and a password field. A strength meter consist of principles progress and principles list.

Annotated Password Strength Meter

This concepts will map directly to React components that you’ll create. A static markup is also placed
inside the grid. You can use Grid, Row and Col to create a HTML markup like this:

1 <div class="container">

2 <div class="row">

3 <div class="col-md-8">

4 ...

5 </div>

6 <div class="col-md-4">

7 ...

8 </div>

9 </div>

10 </div>

Which maps directly into:

Password Strength Meter 5

1 <Grid>

2 <Row>

3 <Col md={8}>

4 ...

5 </Col>

6 <Col md={4}>

7 ...

8 </Col>

9 </Row>

10 </Grid>

Remember to import needed React-Bootstrap components at the top of the file:

1 import { Grid, Row, Col } from 'react-bootstrap';

Let’s mimic the top structure (the grid) of your markup and define components based on the logical
division!

1 class PasswordInput extends React.Component {

2 render() {

3 return (

4 <Grid>

5 <Row>

6 <Col md={8}>

7 <PasswordField />

8 </Col>

9 <Col md={4}>

10 <StrengthMeter />

11 </Col>

12 </Row>

13 </Grid>

14);

15 }

16 }

17

18 class StrengthMeter extends React.Component {

19 render() { return null; }

20 }

21

22 class PasswordField extends React.Component {

23 render() { return null; }

24 }

Password Strength Meter 6

So far, so good. In this step you have a “framework” to work with. Another step is to add data.
Default properties technique can be very helpful here. Good password principles will have a name
and a predicate to check whether a principle is satisfied or not. Such predicate will get a password
as an argument - it’s a simple plain JavaScript function.

1 const SPECIAL_CHARS_REGEX = /[^A-Za-z0-9]/;

2 const DIGIT_REGEX = /[0-9]/;

3

4 PasswordInput.defaultProps = {

5 goodPasswordPrinciples: [

6 {

7 label: "6+ characters",

8 predicate: password => password.length >= 6

9 },

10 {

11 label: "with at least one digit",

12 predicate: password => password.match(DIGIT_REGEX) !== null

13 },

14 {

15 label: "with at least one special character",

16 predicate: password => password.match(SPECIAL_CHARS_REGEX) !== null

17 }

18]

19 };

As you can see, the default principles are taken straight from the mockup. You can provide your
own while instantiating the PasswordInput component, making it powerfully configurable for free.

Since in this stage you got two logical components to implement, you need to choose one. In this
recipe StrengthMeter will be implemented as the first one.

Let’s render something. Since in the static mockup the whole strength meter is wrapped within a
Bootstrap’s Panel, let’s render the empty panel at first. Remember to import Panel component class
from the React-Bootstrap package:

1 import { Grid, Row, Col, Panel } from 'react-bootstrap';

Then you can use it:

Password Strength Meter 7

1 class StrengthMeter extends React.Component {

2 render() { return (<Panel />); }

3 }

Let’s start with implementing a static list of principles, withoutmarking them in color as satisfied/not
satisfied. It is a good starting point to iterate towards the full functionality. To do so, you need to
pass principles list to the StrengthMeter component. To do so, simply pass the principles property
from the PasswordInput component:

1 class PasswordInput extends React.Component {

2 render() {

3 let { goodPasswordPrinciples } = this.props;

4

5 return (

6 <Grid>

7 <Row>

8 <Col md={8}>

9 <PasswordField />

10 </Col>

11 <Col md={4}>

12 <StrengthMeter principles={goodPasswordPrinciples} />

13 </Col>

14 </Row>

15 </Grid>

16);

17 }

18 }

Now the data can be used to render a list of principles:

1 class StrengthMeter extends React.Component {

2 render() {

3 let { principles } = this.props;

4

5 return (

6 <Panel>

7

8 {principles.map(principle =>

9

10 <small>

11 {principle.label}

12 </small>

Password Strength Meter 8

13

14)}

15

16 </Panel>

17);

18 }

19 }

Notice how <small> is used inside of the list element. That’s how it is done within the static mockup
- and ultimately you want to achieve the same effect.

So far, so good. A tiny step to make is to add a header just like on the mockup:

1 class StrengthMeter extends React.Component {

2 render() {

3 let { principles } = this.props;

4

5 return (

6 <Panel>

7 <h5>A good password is:</h5>

8

9 {principles.map(principle =>

10

11 <small>

12 {principle.label}

13 </small>

14

15)}

16

17 </Panel>

18);

19 }

20 }

Now it’s time to implement logic for coloring this list whether a given principle is satisfied or not.
Since satisfying process needs the password as an argument, it’s time to introduce the password

variable in the PasswordInput state. It lies within the state because it’ll change in a process - and
will trigger appropriate re-renders.

To do so, you need to introduce a constructor to the PasswordInput component class which will set
the default password variable to ''. Let’s do it!

Password Strength Meter 9

1 class PasswordInput extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = { password: '' };

5 }

6

7 render() {

8 let { goodPasswordPrinciples } = this.props;

9

10 return (

11 <Grid>

12 <Row>

13 <Col md={8}>

14 <PasswordField />

15 </Col>

16 <Col md={4}>

17 <StrengthMeter principles={goodPasswordPrinciples} />

18 </Col>

19 </Row>

20 </Grid>

21);

22 }

23 }

So far, so good. But you need the password information within the StrengthMeter. It can be done
simply by passing the property to StrengthMeter:

1 class PasswordInput extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = { password: '' };

5 }

6

7 render() {

8 let { goodPasswordPrinciples } = this.props;

9 let { password } = this.state;

10

11 return (

12 <Grid>

13 <Row>

14 <Col md={8}>

15 <PasswordField />

Password Strength Meter 10

16 </Col>

17 <Col md={4}>

18 <StrengthMeter principles={goodPasswordPrinciples}

19 password={password} />

20 </Col>

21 </Row>

22 </Grid>

23);

24 }

25 }

Strength meter now got the password provided. That means you can provide a handy method for
checking whether a principle is satisfied or not.

1 class StrengthMeter extends React.Component {

2 principleSatisfied(principle) {

3 let { password } = this.props;

4

5 return principle.predicate(password);

6 }

7

8 render() {

9 let { principles } = this.props;

10

11 return (

12 <Panel>

13 <h5>A good password is:</h5>

14

15 {principles.map(principle =>

16

17 <small>

18 {principle.label}

19 </small>

20

21)}

22

23 </Panel>

24);

25 }

26 }

Since you got your primary information defined as a handy method, now you should transform it
into something visual. Here the classNames utility will be used to set CSS classes on principle list

Password Strength Meter 11

elements based on the status of principle satisfaction. Remember to import the appropriate function:

1 import classNames from 'classnames';

With this utility you can create principleClassmethod which will return the appropriate class for
the principle list element:

1 class StrengthMeter extends React.Component {

2 principleSatisfied(principle) {

3 let { password } = this.props;

4

5 return principle.predicate(password);

6 }

7

8 principleClass(principle) {

9 let satisfied = this.principleSatisfied(principle);

10

11 return classNames({

12 ["text-success"]: satisfied,

13 ["text-danger"]: !satisfied

14 });

15 }

16

17 render() {

18 let { principles } = this.props;

19

20 return (

21 <Panel>

22 <h5>A good password is:</h5>

23

24 {principles.map(principle =>

25 <li className={this.principleClass(principle)>

26 <small>

27 {principle.label}

28 </small>

29

30)}

31

32 </Panel>

33);

34 }

35 }

Password Strength Meter 12

classNames takes an object with CSS classes as keys - and creates an appropriate class string from
all keys that has values evaluating to the truthy value. It allows you to work with conditional CSS
classes in an easy way. In previous versions of React it was the built in utility from the React.addons,
called classSet. In recent versions of React it’s gone and needs to be installed separately.

Next interesting thing in this example is the new ECMAScript 2015 syntax for defining keys. If you
use [and] brackets the key defined will be a return value of an expression inside those brackets.
It allows you to define keys based on function return values, use string literals to define keys with
special symbols like "-", or use backticks string syntax to define keys with interpolated values in it.
Neat!

To test whether this logic works or not, try to change the password default value - you’ll see that
appropriate CSS classes will get appended to list elements.

That’s how the logical piece of principle list is implemented. As has been said before, it’s usual that
in React such logical pieces are mapped directly into components. That means you should extract
a PrinciplesList component out of StrengthMeter component and use it. It’s simple. You just
need to copy logic from the StrengthMeter component down and use the newly component as a
replacement to a piece of previous tree rendered by render. It can be done like this:

1 class StrengthMeter extends React.Component {

2 render() {

3 return (

4 <Panel>

5 <h5>A good password is:</h5>

6 <PrinciplesList {...this.props} />

7 </Panel>

8);

9 }

10 }

11

12 class PrinciplesList extends React.Component {

13 principleSatisfied(principle) {

14 let { password } = this.props;

15

16 return principle.predicate(password);

17 }

18

19 principleClass(principle) {

20 let satisfied = this.principleSatisfied(principle);

21

22 return classNames({

23 ["text-success"]: satisfied,

24 ["text-danger"]: !satisfied

Password Strength Meter 13

25 });

26 }

27

28 render() {

29 let { principles } = this.props;

30

31 return (

32

33 {principles.map(principle =>

34 <li className={this.principleClass(principle)}>

35 <small>

36 {principle.label}

37 </small>

38

39)}

40

41);

42 }

43 }

As you can see, it’s a fairly mechanical step to do - principleSatisfied and principleClass are
moved down to the PrinciplesList component. Then you cut the part of the tree from render (In
this case) and rendered it within the lower-level component.

Since it is a new component, you must pass needed properties down to it. And there is a very
interesting syntax used. You can use {...object} syntax to pass the whole object as properties in
JSX. It is part of the bigger feature called object spread operator. You can use it in ECMAScript 2016
(a.k.a ECMAScript 7 or ES7) codebase today - and read more about it here³. One of the transpilers
that support it is Babel.js⁴. It is built into JSX regardless you use ECMAScript 2016 features in your
codebase or not.

Since your this.props in StrengthMeter component is { principles: <$1>, password: <$2> },
the syntax:

1 <PrinciplesList {...this.props} />

Is equal to saying:

1 <PrinciplesList principles={<$1>} password={<$2>} />

³https://github.com/sebmarkbage/ecmascript-rest-spread
⁴http://babeljs.io/docs/usage/experimental/

https://github.com/sebmarkbage/ecmascript-rest-spread
http://babeljs.io/docs/usage/experimental/
https://github.com/sebmarkbage/ecmascript-rest-spread
http://babeljs.io/docs/usage/experimental/

Password Strength Meter 14

It is a very handy shortcut to passing all or all except some of properties down to the lower-level
components.

OK. One of the logical pieces is done - and a component representing it is created. To finish the
strengthmeter logical piece, there is onemore thing - a progress bar which brings the visual feedback
how strong your password is.

Let’s start with a static progress bar. Remember to import it from your react-bootstrap package:

1 import { Grid, Row, Col, Panel, ProgressBar } from 'react-bootstrap';

Then, add it in your StrengthMeter component. Why there? Because you’ll extract the Principle-
sProgress component later, just like you did with PrinciplesList.

1 class StrengthMeter extends React.Component {

2 render() {

3 return (

4 <Panel>

5 <ProgressBar now={50} />

6 <h5>A good password is:</h5>

7 <PrinciplesList {...this.props} />

8 </Panel>

9);

10 }

11 }

As you can see, now property manages how the progress bar is filled. Let’s attach a behaviour which
will manage this number.

1 class StrengthMeter extends React.Component {

2 satisfiedPercent() {

3 let { principles, password } = this.props;

4

5 let satisfiedCount = principles.map(p => p.predicate(password))

6 .reduce((count, satisfied) =>

7 count + (satisfied ? 1 : 0)

8 , 0);

9

10 let principlesCount = principles.length;

11

12 return (satisfiedCount / principlesCount) * 100.0;

13 }

14

Password Strength Meter 15

15 render() {

16 return (

17 <Panel>

18 <ProgressBar now={this.satisfiedPercent()} />

19 <h5>A good password is:</h5>

20 <PrinciplesList {...this.props} />

21 </Panel>

22);

23 }

24 }

Computing this percent is made by using two functions from the standard library - map and reduce.

To compute how many principles are satisfied, an array of principles is taken. Then it is mapped
to an array which contains boolean values of predicate results. So if your password is '1$a', the
principles.map(p => p.predicate(password)) will return [false, true, true] array.

After computing this result, a reduce is called to obtain the count of satisfied principles.

reduce function takes two parameters:

• an accumulating function which will get called with two arguments: an accumulating value
and an element of the array;

• a starting accumulating value:

The idea is simple - reduce iterates through your array and modifies its accumulating value after
each step. After traversing the whole array, the final accumulating value is returned as a result. It is
called folding a collection in functional languages.

The accumulating value passed to the current element is the return value of the accumulating
function called on the previous element or the starting value if it is a first element.

So in case of this [false, true, true] array described before, reduce will do the following things:

• Call the accumulating function with arguments 0 and false. Since the second argument is
false, 0 is returned from this function.

• Call the accumulating function with arguments 0 and true. Since the second argument is
true, 1 is added to 0, resulting in a return value of 1.

• Call the accumulating functionwith argument 1 and true. Since the second argument is true,
1 is added to 1, resulting in a return value of 2.

• There are no more elements in this array. 2 is returned as a return value of the whole reduce
function.

Password Strength Meter 16

You can read more about this function here⁵. It can make your code much more concise - but be
careful to not hurt maintainability. Accumulating functions should be short and the whole result
properly named.

Since your satisfiedCount is computed, the standard equation for computing percent is used.

All that is left is to provide a proper style (“green” / “yellow” / “red” state described before) of the
progress bar, based on the computed percent.

• Awful password - progress bar is red and an input is in “red” state (1/3 or less principles
satisfied)

• Mediocre password - progress bar is yellow and an input is in “yellow” state (more than 1/3
to 2/3 principles satisfied)

• Great password - progress bar is green and an input is in “green” state (2/3 or more principles
satisfied)

To do so, let’s introduce another method that will check these ‘color states’.

1 class StrengthMeter extends React.Component {

2 satisfiedPercent() {

3 let { principles, password } = this.props;

4

5 let satisfiedCount = principles.map(p => p.predicate(password))

6 .reduce((count, satisfied) =>

7 count + (satisfied ? 1 : 0)

8 , 0);

9

10 let principlesCount = principles.length;

11

12 return (satisfiedCount / principlesCount) * 100.0;

13 }

14

15 progressColor() {

16 let percentage = this.satisfiedPercent();

17

18 return classNames({

19 danger: (percentage < 33.4),

20 success: (percentage >= 66.7),

21 warning: (percentage >= 33.4 && percentage < 66.7)

22 });

23 }

⁵https://developer.mozilla.org/pl/docs/Web/JavaScript/Referencje/Obiekty/Array/Reduce

https://developer.mozilla.org/pl/docs/Web/JavaScript/Referencje/Obiekty/Array/Reduce
https://developer.mozilla.org/pl/docs/Web/JavaScript/Referencje/Obiekty/Array/Reduce

Password Strength Meter 17

24

25 render() {

26 return (

27 <Panel>

28 <ProgressBar now={this.satisfiedPercent()}

29 bsStyle={this.progressColor()} />

30 <h5>A good password is:</h5>

31 <PrinciplesList {...this.props} />

32 </Panel>

33);

34 }

35 }

Neat thing about classNames is that you can also use it here - look at how it is used in this example.
Since all color state options are mutually exclusive, only the single string will get returned - which
is also a valid CSS class statement. It allows us to express this logic in an elegant way without if’s.

That means we got all pieces of the strength meter done. You can switch to PasswordField

implementation. But first, extract the logical pieces of principles progress into a separate component.

1 class StrengthMeter extends React.Component {

2 render() {

3 return (

4 <Panel>

5 <PrinciplesProgress {...this.props} />

6 <h5>A good password is:</h5>

7 <PrinciplesList {...this.props} />

8 </Panel>

9);

10 }

11 }

12

13 class PrinciplesProgress extends React.Component {

14 satisfiedPercent() {

15 let { principles, password } = this.props;

16

17 let satisfiedCount = principles.map(p => p.predicate(password))

18 .reduce((count, satisfied) =>

19 count + (satisfied ? 1 : 0)

20 , 0);

21

22 let principlesCount = principles.length;

23

Password Strength Meter 18

24 return (satisfiedCount / principlesCount) * 100.0;

25 }

26

27 progressColor() {

28 let percentage = this.satisfiedPercent();

29

30 return classNames({

31 danger: (percentage < 33.4),

32 success: (percentage >= 66.7),

33 warning: (percentage >= 33.4 && percentage < 66.7)

34 });

35 }

36

37 render() {

38 return (<ProgressBar now={this.satisfiedPercent()}

39 bsStyle={this.progressColor()} />);

40 }

41 }

You can leave StrengthMeter for now - it is finished. Let’s compare the produced HTML with the
static HTML mockup. "mwhkz1$ is used as a default state to compare:

1 <div class="panel panel-default">

2 <div class="panel-body">

3 <div class="progress">

4 <div class="progress-bar progress-bar-success"

5 style="width:100%"></div>

6 </div>

7 <h5>A good password is:</h5>

8

9 <li class="text-success">

10 <small>

11 6+ characters

12 </small>

13

14 <li class="text-success">

15 <small>

16 with at least one digit

17 </small>

18

19 <li class="text-success">

20 <small>

Password Strength Meter 19

21 with at least one special character

22 </small>

23

24

25 </div>

26 </div>

1 <div class="panel panel-default" data-reactid="...">

2 <div class="panel-body" data-reactid="...">

3 <div min="0" max="100" class="progress" data-reactid="...">

4 <div min="0" max="100" class="progress-bar progress-bar-success"

5 role="progressbar" style="width:100%;" aria-valuenow="100"

6 aria-valuemin="0" aria-valuemax="100" data-reactid="...">

7 </div>

8 </div>

9 <h5 data-reactid="...">A good password is:</h5>

10 <ul data-reactid="...">

11 <li class="text-success" data-reactid="...">

12 <small data-reactid="...">

13 6+ characters

14 </small>

15

16 <li class="text-success" data-reactid="...">

17 <small data-reactid="...">

18 with at least one digit

19 </small>

20

21 <li class="text-success" data-reactid="...">

22 <small data-reactid="...">

23 with at least one special character

24 </small>

25

26

27 </div>

28 </div>

Apart from the special data-reactid attributes added to be used by React internally, the syntax is
very similar. React-Bootstrap progress bar component added an accessibility attributes that were
absent in the static mockup. Very neat!

The last part of this feature is still to be done. It is a PasswordField component. Let’s start with
adding a static input.

Remember to import the Input component from the react-bootstrap package, like this:

Password Strength Meter 20

1 import { Grid, Row, Col, Panel, ProgressBar, Input } from 'react-bootstrap';

Then, add a static input to the PasswordField component:

1 class PasswordField extends React.Component {

2 render() {

3 return (

4 <Input

5 type='password'

6 label='Password'

7 hasFeedback

8 />

9);

10 }

11 }

hasFeedback property takes care of adding feedback icons, like it is done in a mockup. When you
set an appropriate bsStyle (which will be done later), a proper icon will show up on the right of the
input.

You need to modify the password using an input. Since PasswordField is the owner of this data,
both the data and a handler responsible for changing password must be passed to PasswordField

component as properties.

Let’s write a handler which will take the password as an argument and change PasswordField

password state. Since it will be passed as a property, you must bind it to the PasswordField instance
in the constructor. It can be done like this:

1 class PasswordInput extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = { password: '' };

5

6 this.changePassword = this.changePassword.bind(this);

7 }

8

9 changePassword(password) {

10 this.setState({ password });

11 }

12

13 render() {

14 let { goodPasswordPrinciples } = this.props;

15 let { password } = this.state;

Password Strength Meter 21

16

17 return (

18 <Grid>

19 <Row>

20 <Col md={8}>

21 <PasswordField password={password}

22 onPasswordChange={this.changePassword} />

23 </Col>

24 <Col md={4}>

25 <StrengthMeter password={password}

26 principles={goodPasswordPrinciples} />

27 </Col>

28 </Row>

29 </Grid>

30);

31 }

32 }

As you can see there is changePassword method which takes a password and directly calling
setState. This method is pushed down via the onPasswordChange property - an event handler on
the lower level will call this method.

Speaking of which, let’s define this handler in the PasswordField component:

1 class PasswordField extends React.Component {

2 constructor(props) {

3 super(props);

4 this.handlePasswordChange = this.handlePasswordChange.bind(this);

5 }

6

7 handlePasswordChange(ev) {

8 let { onPasswordChange } = this.props;

9 onPasswordChange(ev.target.value);

10 }

11

12 render() {

13 let { password } = this.props;

14

15 return (

16 <Input

17 type='password'

18 label='Password'

19 value={password}

Password Strength Meter 22

20 onChange={this.handlePasswordChange}

21 hasFeedback

22 />

23);

24 }

25 }

As you can see, there is a very thin wrapper defined to pass data from an event handler to the
onPasswordChange callback. Generally you should avoid defining high-level API in terms of events
- it’s very easy to write a wrapper like this. A higher-level method which is defined in terms of
password is a great help when comes to testing such component - both in the manual and the
automatic way.

The last thing left to do is implementing logic of setting the proper “color state” of an input. This
is a very similar logic that you defined before with progress bar color state. The easiest way to
implement it is to copy this behaviour for now - with a very slight modification.

But before doing so your password principles must be passed as a property to the PasswordField

component. I bet you already know how to do that - just pass it as a property of the PasswordField
component rendered within the PasswordInput higher level component:

1 class PasswordInput extends React.Component {

2 constructor(props) {

3 super(props);

4 this.state = { password: '' };

5

6 this.changePassword = this.changePassword.bind(this);

7 }

8

9 changePassword(password) {

10 this.setState({ password });

11 }

12

13 render() {

14 let { goodPasswordPrinciples } = this.props;

15 let { password } = this.state;

16

17 return (

18 <Grid>

19 <Row>

20 <Col md={8}>

21 <PasswordField password={password}

22 onPasswordChange={this.changePassword}

Password Strength Meter 23

23 principles={goodPasswordPrinciples} />

24 </Col>

25 <Col md={4}>

26 <StrengthMeter password={password}

27 principles={goodPasswordPrinciples} />

28 </Col>

29 </Row>

30 </Grid>

31);

32 }

33 }

Since you got all the data needed, copying is the very simple step now:

1 class PasswordField extends React.Component {

2 constructor(props) {

3 super(props);

4 this.handlePasswordChange = this.handlePasswordChange.bind(this);

5 }

6

7 handlePasswordChange(ev) {

8 let { onPasswordChange } = this.props;

9 onPasswordChange(ev.target.value);

10 }

11

12 satisfiedPercent() {

13 let { principles, password } = this.props;

14

15 let satisfiedCount = principles.map(p => p.predicate(password))

16 .reduce((count, satisfied) =>

17 count + (satisfied ? 1 : 0)

18 , 0);

19

20 let principlesCount = principles.length;

21

22 return (satisfiedCount / principlesCount) * 100.0;

23 }

24

25 inputColor() {

26 let percentage = this.satisfiedPercent();

27

28 return classNames({

Password Strength Meter 24

29 error: (percentage < 33.4),

30 success: (percentage >= 66.7),

31 warning: (percentage >= 33.4 && percentage < 66.7)

32 });

33 }

34

35 render() {

36 let { password } = this.props;

37

38 return (

39 <Input

40 type='password'

41 label='Password'

42 value={password}

43 bsStyle={this.inputColor()}

44 onChange={this.handlePasswordChange}

45 hasFeedback

46 />

47);

48 }

49 }

There is a slight modification made while copying this logic. Apart from changing method name
from progressColor to inputColor, one case of the color state was changed from danger to error.
It is an inconsistency present in the React-Bootstrap API. The rest stays the same - you even use the
same property to pass the color state (called bsStyle). hasFeedback takes care of displaying proper
icons when the state changes.

That’s it. The whole component is implemented. To be sure whether it is done correctly, let’s
compare the output produced by React with the static HTMLmockup that has been presented before.
Password used to render this ‘snapshot’ of the state is "mwhkz1" - so the “yellow” state.

1 <div class="container">

2 <div class="row">

3 <div class="col-md-8">

4 <div class="form-group has-warning has-feedback">

5 <label class="control-label"

6 for="password-input">Password</label>

7 <input type="password"

8 class="form-control"

9 id="password-input"

10 value="mwhkz1"

11 placeholder="Password" />

Password Strength Meter 25

12 <span class="glyphicon glyphicon-warning-sign form-control-feedback"

13 aria-hidden="true">

14 </div>

15 </div>

16 <div class="col-md-4">

17 <div class="panel panel-default">

18 <div class="panel-body">

19 <div class="progress">

20 <div class="progress-bar progress-bar-warning"

21 style="width:66%"></div>

22 </div>

23 <h5>A good password is:</h5>

24

25 <li class="text-success"><small>6+ characters</small>

26 <li class="text-success"><small>with at least one digit</small>

27 <li class="text-danger"><small>with at least one special character</\

28 small>

29

30 </div>

31 </div>

32 </div>

33 </div>

34 </div>

1 <div class="container" data-reactid="...">

2 <div class="row" data-reactid="...">

3 <div class="col-md-8" data-reactid="...">

4 <div class="form-group has-feedback has-warning" data-reactid="...">

5 <label class="control-label" data-reactid="...">

6 Password

7 </label>

8 <input type="password"

9 label="Password"

10 value=""

11 class="form-control"

12 data-reactid="...">

13 <span class="glyphicon form-control-feedback glyphicon-warning-sign"

14 data-reactid="...">

15 </div>

16 </div>

17 <div class="col-md-4" data-reactid="...">

18 <div class="panel panel-default" data-reactid="...">

Password Strength Meter 26

19 <div class="panel-body" data-reactid="...">

20 <div min="0" max="100" class="progress" data-reactid="...">

21 <div min="0" max="100"

22 class="progress-bar progress-bar-warning"

23 role="progressbar"

24 style="width: 66.667%;"

25 aria-valuenow="66.66666666666666"

26 aria-valuemin="0"

27 aria-valuemax="100"

28 data-reactid="...">

29 </div>

30 </div>

31 <h5 data-reactid="...">A good password is:</h5>

32 <ul data-reactid="...">

33 <li class="text-success" data-reactid="...">

34 <small data-reactid="...">

35 6+ characters

36 </small>

37

38 <li class="text-success" data-reactid="...">

39 <small data-reactid="...">with at least one digit</small>

40

41 <li class="text-danger" data-reactid="...">

42 <small data-reactid="...">with at least one special character</sma\

43 ll>

44

45

46 </div>

47 </div>

48 </div>

49 </div>

50 </div>

Apart from the elements wrapping “text” nodes and accessibility improvements to progress
bar that React-Bootstrap provides, the markup matches. That means you achieved your goal of
implementing password strength meter logic in React. Great work!

What’s next?

It is a smell that logic of the color state is duplicated. It can be fixed by moving it to the higher-
level component (PasswordInput) or by introducing a higher-order component which is a mixin

Password Strength Meter 27

replacement for ECMAScript 2015 classes. You can read more about it here⁶.

You may notice that StrengthMeter component is very generic - you can use it everywhere where
your data can be checked against a set of predicates. That means you can change its name and re-use
it in the other parts of your application.

The same can be done with a PasswordField component. In fact all that defines it is a password
strength meter is defined in a top-level component. The rest can be re-used in many other contexts.

Summary

As you can see, being backed by HTML mockup in React allows you to check your work while
iterating. You can construct your mockup from the top, like it was done here. Alternatively you
can start with pasting the code of the markup and changing properties to match React (like class
becomes className and so on). Then, you split it into logical parts and add behaviour with the same
starting point as you had with the static markup.

Password Strength Meter is a very handy widget to have - it is ready for usage with very small
modifications - namely, adding a way to inform about the password state the rest of the world. You
can do it by using lifecycle methods or by moving state even higher - and passing it as a property
like it was done with StrengthMeter and PasswordField. Good luck!

⁶https://gist.github.com/sebmarkbage/ef0bf1f338a7182b6775

	Table of Contents
	Password Strength Meter
	Requirements
	Recipe
	What's next?
	Summary

